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ABSTRACT

This thesis formulates the full nonlinear equations of motion for determining the
stability of helicopter coupled rotor-fuselage motion utilizing MATLAB®‘s Symbolic
Math Toolbox. Using the extended symbolic processor toolbox, the goal of this work was
to eliminate the time consuming process of converting Fortran or C code generated by the
symbolic processor, MAPLE® into a MATLAB® useable format where it is further
incorporated into an ‘S-function’ to be used in the dynamic simulation environment.

The formulation of the equations of motion utilized in this process is unique in
that it uses the complete set of nonlinear terms in the equations of motions without
utilizing ordering schemes, small angle assumptions, linearizing techniques, or other
simplifying assumptions. After derivation, the equations of motion are numerically
integrated using the dynamic simulation software SIMULINK® and a time history plot is
generated of blade and fuselage motion. The equations of motion are regenerated with
each time step allowing the adjustment of characteristic structural, blade and dampening
properties.  These time traces can be used to explore the effects of damping
nonlinearities, structural nonlinearities, active control, individual blade control, and

damper failure on ground resonance.
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I INTRODUCTION

A. DISCUSSION

Air and ground resonance are potentially destructive mechanical instabilities that
may occur in helicopters due to dynamically coupled interaction between the rigid body
motion of the fuselage and oscillations of the rotor blades in their plane of rotation. For
over 40 years engineers have felt reasonably comfortable with their ability to predict and
control air and ground mechanical instabilities. The self excited vibrations that occur
while an aircraft is inv contact with the ground is known as ground resonance and this will
be the primary focus of this thesis.

Helicobter manufacturers employ several methods of blade root retention to
obtain’the flapping and lead-lag degrees of freedom necessary for a helicopter rotor blade
to operate properly. These methods include: (1) fully articulated; (2) bearingless; (3) and
hingeless main rotor designs.

Fully articulated rotor heads utilize two hinges that rotate with and are attached to
each rotor blade in order to provide the necessary freedom of movement for the dynamic
motion of the rotor blade. One hinge is positioned in a horizontal plane and allows for
flapping motion of the rotor blade. The other hinge is positioned in a vertical plane. This
hinge allows for lead-lag, movement of the blade in its plane of rotation. The lead-lag
hinge generally incorporates some damping. This is generally a hydraulic air-oil strut or
an elastomeric design, to constrain the movement of the individual rotor blades. Early

designs of these dampers have tended to be heavy and maintenance intensive.



The hingeless/bearingless rotor is a variation of the fully articulated rotor system.
In this configuration the designer has substituted a flexible section to replace both the
lead-lag hinge as well as the flapping hinge.

In short, by eliminating the need for hinges, improvements in technology,
particularly composite materials, have allowed designers to significantly reduce the
weight and complexity of modern helicopter rotor systems. However, this
reductior;/elimination of hinges has also reduced the likely attachment points for linear
dampers and other means of controlling the motion of the rotor blades. This further
complicates eliminating ground resonance, as well as the associated complexity of
manufacturing and maintenance of the dampers. By simplifying and facilitating the
process of modeling ground resonance the hope is to open the study of ground resonance
to a deeper understanding as well as investigate methods of controlling it. By allowing
the variation of parameters and by receiving immediate feedback as to the resultant
effects, this program and future versions will help improve the properties of existing
damper systems, facilitate the possibility for application of nonlinear dampers, potentially
eliminate external dampers using existing material technology, and facilitate the

investigation of other aero-mechanical instabilities.

B. BACKGROUND

In the early 1940’s the phenomenon of ground resonance was already being
investigated by NACA. Robert Coleman’s pioneering work was the first definitive
analysis to correctly address the issue of ground resonance [Ref. 1] and [Ref. 2]. In his

work Coleman identified ground resonance to be a self-excited, mechanical instability



phenomenon. He found the primary modes to be excited in the normal operation of the
rotorcraft were the hinged rigid body response of the blades, in their plane of rotation
coupled with horizontal deflection of the main rotor pylon.

M. L. Deutsch simplified the results of Coleman and Feingold for the practicing
engineer. Based on Coleman’s theory he developed a quantitative analysis of the
damping required to keep the helicopter free of the instability, often referred to as
Deutsch’s Criteria [Ref. 3].

Coleman and Feingold’s work became the basis for the evolution of theory and
design techniques used for dealing with ground resonance. Although the classic theory
offers much insight and understanding into the phenoménon, especially for conventional
articulated rotor systems, the increasing popularity of hingeless and bearingless rotor
designs in modern helicopters called for increasingly more sophisticated analytical tools.

More sophisticated analytical tools became possible with the evolution of digital
computers and the improvement in computational power. Peters and Hohenemser [Ref.
24] apply Floquet analysis to the problem of lifting rotor stability. Floquet analysis is a
method which can be used to determine the stability of solutions to systems of linear
ordinary differential equations with periodic coefficients. The Floquet transition matrix
which relates the system state variables at the beginning and end of a rotational period is
compﬁted by numerical time wise integration. The ei genvalﬁes of the transition matrix
are a measure of system stability. Hammond [Ref. 25] applies Floquet analysis to the
prediction of mechanical instabilities, specifically examining the case of unbalanced lead-

lag damping. The unbalanced problem requires solution of the equations of motion with



the blade equations expressed in the rotating reference frame because a transformation to
the fixed system is no longer possible for a ground resonance analysis as was possible for
the isometric case. As a result, you are left with a system of equations with periodic
coefficients which can be handled by the Floquet method.

Hingeless and bearingless rotor configurations often face the additional difficulty
of air resonance. Aerodynamics may play more than a passive roll in the ground
resonance regime in hingeless systems in contrast to articulated systems where
aerodynamics have little effect. As a result, more complex models are required to
accurately represent the physics of the helicopter aeromechanical stability problem.
Models must include blade flap and torsional degrees of freedom as well as lead-lag
degrees of freedom. Fuselage models also should include pitch and roll as well as
translational degrees of freedom. Aerodynamic models can range from quasi-steady strip
theory to unsteady aerodynamic theories which include elaborate wake models or
dynamic inflow models. Ormiston [Ref. 26] utilizes a rigid blade and rigid fuselage
mode] with flap-lag and pitch-roll degreés of freedom to conduct parametric
investigations based on an eigenvalue analysis. As is typical, the equations of motion
were derived by a Newtonian approach and the resulting system of nonlinear differential
equations are linearized for small perturbations. The model includes linear rotor blade
and landing gear springs, viscous damping, and quasi-steady aerodynamics. Freidmann
and Venkatesan [Ref. 27] and Freidmann and Warmbrodt [Ref. 14] derive the complete
set of governing equations of a helicopter rotor coupled to a rigid body fuselage. The

equations account for rotor blade elastic deformations and include quasi-steady



aerodynamics or modified Theordorsen unsteady aerodynamic theory. In deriving the
full equatiohs of motion, Freidmann et al., stress the importance of applying an ordering
scheme to the process in order to handle the complexity of the equations and enormous
number of terms generated by their expansion. The equations, as presented by Freidmann
et al. [Ref. 27 and 14}, are in a form which makes them generally applicable to a wide
range of rotorcraft problems.

Another interest in the study of helicopter ground resonance is the effect that
nonlinear elastic and damping forces have on stability. Tongﬁe [Ref. 23], Tongue and
Flowers [Ref. 9 and 8], Tongue and Jankowski [Ref. 28], and Tang and Dowell [Ref. 29],
use variations of the nonlinear technique of harmonic balance using describing functions
to represent nonlinear damping. The technique is useful for investigating limit cycle
behavior of strongly nonlinear systems and its impact on system stability.

Helicopter aecromechanical instabilities can be analyzed by methods ranging from
Coleman’s classic analysis to direct time integration of the equations of motion. As .
engineers strive to develop rotor systems free of ground and air resonance which do not
require the addition of maintenance intensive mechanical damping systefrls, more
elaborate models will be needed to accurately capture all physical aspects of the problem.'
To achieve the truly damperless rotor Ormiston [Ref. 30] addresses three different
approaches which may be feasible, 1) incorporating high damping material into the blade
or flexbeam structure, 2) automatic feedback control, and 3) develbpment of aeroelastic
couplings to provide inherent stability. These three approaches provided the impetus

behind the work performed by LT Christopher S. Robinson.




A full nonlinear simulation model of coupled rotor/fuselage interaction was
created by Robinson in March of 1997 at the Naval Postgraduate School (NPS) [Ref. 4].
This model is a dedicated Coleman analysis tool that initially utilizes a symbolic
processor, Maple® to derive the full nonlinear equations of motion of a helicopter using
the LaGrange equation. In Robinson’s thesis the derived equations of motion are then
converted, in Maple®, to Fortran or C and then converted into a MATLAB®
programming language. The converted MATLAB® result is incorporated into a
SIMULINK® S-function, producing time history plots of blade/fuselage motion. This
process is unique in that it uses the complete set of nonlinear terms in the equations of
motions without utilizing ordering schemes, small angle assumptions, linearizing
techniques, or other simplifying assumptions.

Further development of the NPS modeler was accomplished by Robinson with the
help of LCDR Robert L. King, [Ref. 12, 18, 19, 20]. The modeler was used to simulate
the Froude Scale RAH-66 [Ref. 21]. It was also used to investigate an interblade
coupling approach to improved rotor stability without lag dampers [Ref. 22].

King completed his dissertation in June 1999 [Ref. 5]. In his dissertation, King
adopted Robinson’s work to further explore the potential of eliminating the snubber-
damper or damper on hingeless rotor designs and replace it with a flexbeam that has been
modified to possess nonlinear properties. It is King’s research in this field that has
provided the motivation to accomplish the following work.

Since Robinson’s original work, MATLAB® has incorporated a symbolic

processing toolbox into its software. By using the extended symbolic processor toolbox



in MATLAB® the goal is to eliminate the awkward and time consuming process of
converting the Fortran or C code generated by MAPLE® into a MATLAB® useable
format where it is further incorporated into an ‘S-function’ to be used in the dynamic
simulation environment. Direct interface between the derivation of the equations of
motion and the actual simulation process results in fewer steps required to develop a
system, it reduces the computer programs requifed to run a simulation, and reduces the
potential ‘contamination of the solution >that may result from human interaction.
Hopefully this will encourage further use of the rotor-fuselage coupled motion simulation
and enable researchers of all levels to explore the phenomenon of ground resonance.
After a brief explanation of the work performed by Robinson, Rafanello, and
King an introduction to MATLAB®, MATLAB® the symbolic processing toolbox, the S-
function, and the Simulink model will be provided. The goal, again, is to provide a path

for future use of the NPS modeler.
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IL CURRENT MODEL

A. REVIEW OF WORK PERFORMED BY ROBINSON

1. Simple Model

As with this thesis, Robinson’s work began with a simplified model using reduced
degrees of freedom on a three bladed model. The simplified model is based on that of
Coleman as is shown in Figure 1, [Ref. 1]. Elastic forces generated by rotor blade and
flexbeam motion were modeled as a linear torsional spring located at the effective hinge
position of the blade. Landing gear stiffness was also modeled with linear springs. The
landing gear and lead-lag dampers were modeled with linear dashpot type dampers.
Transformation between the various systems, in order to develop Lagrange’s equations of
motion, were accomplished using Euler angle rotations. For the simple model the
coordinate transformations used were hub (parallel to fuselage but offset a distance h in
the positive z direction) to inertial (fixed relative to the earth), blade undeformed (fixed to
the effective hinge position) to hub, and blade deformed (fixed to the effective hinge

position with the x-axis coincident with the blade ‘elastic’ axis) to blade undeformed.



Spmng
/

Figure 1. Simplified Rotor Model [From Ref. 4]

Robinson showed excellent agreement between his mode] and the Coleman
model, with departure occurring only when displacements are very large, Figure 2. This
s to be expected since Robinson’s model does not assume small angle theory whereas the

Coleman-Feingold-Bramwell model does.
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Comparison of Simulation Results to Solution of Coleman Equations
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Figure 2. Validation of model with solution of Coleman’s model [From Ref. 4]

Figure 3 is a parametric plot of the simple model with an isotropic pylon and
rotor. The damping ratio from the moving block result is plotted versus w/w; for various

Deutsch numbers [Ref. 15].
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Figure 3. Validation of model against Deutsch Criteria [After Ref. 4]

This model allows for the following degrees of freedom:
ul - Fuselage translation in 1-direction (x-direction)
u2 - Fuselage translation in the 2-direction (y-direction)

{«- Lead-lag angular displacement of k™ rotor blade

2. Complex Model

The complex model is based on that used by Straub [Ref. 6]. This model assumes
rigid blades and fuselage, as in the simple model, with flap and lead-lag hinges as

coincident. It incorporates fuselage rotation as well as blade flap, requiring additional

12



transformations. Figures 4 and 5 show a schematic representation of the complex model
and the transformations utilized in the derivation. The transformations required in the
complex model are fuselage (fixed to center of gravity of fuselage) to inertial, hub to

fuselage, blade undeformed to hub, blade deformed to blade undeformed.
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Q (Omega)

A

C (zeta)

Figure 4. Schematic representation of complex model transformations
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Zr

Figure 5. Schematic representation of complex model transformations

This model utilizes the following degrees of freedom:
ul - Fuselage translation in 1-direction (x-direction)
u2 - Fuselage translation in the 2-direction (y-direction)
r1 — Fuselage rotation about 1-axis (roll)
f2 — Fuselage rotétion about 2-axis (pitch)

¢« - Lead-lag angular displacement of k™ rotor blade

‘BK - Flap angular displacement of k™ rotor blade
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3. Derivation of the Lagrange Equation

A brief overview of the derivation accomplished by Robinson will be included in
this thesis. For a more extensive explanation see Robinson’s thesis [Ref. 4]. The

Lagrangian equation may be expressed as follows:

— — +—+—=F,
dt| dq,

d(JdT _g_]: oU oD
dgq aqi 04 l

Where T is the kinetic energy, U is the potential energy, D is the dissipation
function, F; is the generalized force, and q; is the generalized displacement. In the
complex model the generalized force term F;, will describe the aerodynamic forces on the
individual rotor blades. This derivation develops a system of homogeneous equations.
The various energy terms are broken down into two categories, blade motion and

fuselage motion to give the following equations:

N
T =T, + Y (Tp),
k=1
N
U=U,+)Y Uy,
k=1

D=D; +) (Uy),

k=1

Where the subscripts F and B indicate the fuselage and rotor blade respectively.

a. Kinetic Energy Terms

The kinetic energy of the kth rotor blade is given by the following

expression:
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Here p is the position of a point on the elastic axis of the k™ rotor blade
with respect to the inertial coordinate system at any instant in time, and m’ is the mass
distribution per unit length of the blade (mass distribution per unit length is assumed to
be uniform). The position of a point on the elastic axis of a rotor blade, p, is expressed
as the sum of relative positions with respect to the various coordinate systems
transformed to the inertial system. Thus,

ﬁ = (ﬁF_I)I + (ﬁH_F)I + ([)Bu_H>l + (ﬁBd_Bu)I + (ﬁP_BD)I 4

where, for example, the term (0, ,), is the position of the origin of the
undeformed blade coordinate system with respect to the hub coordinate system
transformed into the inertial coordinate system.

A Following the proper transformations, the resultant expression provides
the position of an arbitrary point on the elastic axis of the k™ rotor blade, with respect to
the inertial coordinate system, at any instant in time, in terms of the system degrees of
freedom. The time derivative of this expression gives the velocity, fo’ , which is
substituted into the equation for kinetic energy for the k™ rotor blade.

The fuselage kinetic energy in terms of translational and rotational degrees

of freedom is

1 21 .
(TF )tmns = EMlulz + EM2M§

1., ., 1 . ..
Te) = 5111712 "'5122"22 = 21,57,

b. Potential Energy Terms

The elastic forces generated by rotor blade motion give rise to a potential
energy term in the Lagrange equation. Since a rigid blade model was assumed, the

potential energy was modeled using equivalent torsional springs to restrain the rotor
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blade, with spring constants selected to approximate elastic forces due to in plane and out
of plane bending of the rotor blade (and the flexbeam in the hingeless case). The

potential energy of the kth rotor blade is
1o p 1o o
(UB)k = EKBﬁk +5Kggk

The fuselage potential energy in terms of translational and rotation degrees
of freedom is
1., , 1
U;)yos ==Kl +—K,u?
F) 2 11 2 %2

Up) = % KRI’EZ +%KR2r22

An explanation of the validity of using an equivalent torsional spring
system to model the elastic forces of a deformed rotor blade is given in some detail in

Venkatesan and Friedmann [Ref. 7].

c. Dissipation Function Terms

System damping is modeled in energy form by use of a dissipation |

function, which for the kth rotor blade of he complex rotor model is
1 1.
(DB ) = E Cﬂﬁk + 5 ngk

The dissipation function for the fuselage in terms of translational and rotational
degrees of freedom is

1 .., 1 .
(DF )lrans = 5(:lul2 +_2—C2u§

(DF )ro! =%C Rliiz +%C ‘RZI:‘Z2

d. Resultant Equations

It is important to note that when applying Lagrange’s equation in

MAPLE®, derivatives with respect to the degrees of freedom and the time rates of change
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of the degrees of freedom, the time functional notation which represents these variables

must be converted to independent variable notation. For example, the flap angle degree

dB(1)
ot

of freedom, P(t), and its time rate of change,

, would have to be replaced in all of

~ the energy expressions by the independent variables, § and df} respectively, in order for

a I . _98()

3. 49, ===
94, (where g; = B(t) and ot ) to be evaluated properly by

terms such as oq, and
sl

the MAPLE® symbolic engine. Additionally, for the time derivative term, Jr| 9g, , to

be evaluated properly, all degrees of freedom expressed in independent notation must be

converted back to tiﬁe dependent notation.

The equations of motion generated for the simplified model (Coleman
model) in this format were compared, by Robinson, to the equations used by Flowers and
Tongue [Ref. 8,9]. The equations were found to match exactly except for the nonlinear
damping terms that were not included initially but are later included in ;he simulation.
Robinson’s work has been further utilized by LT Salvator Rafanello and LCDR Robert L.

King.

B. REVIEW OF WORK PERFORMED BY RAFANELLO

Rafanello’s work further validated the NPS ground resonance modeler by
matching simulation results with Professor Roberts E. Wood’s HSS-2 ground resonance
analysis [Ref. 10, 11]. Rafanello used a five bladed version of the simplified model

adapted to the H-3 Sea King. A mass-spring-damper system of the H-3’s landing gear
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was examined to obtain parameters to enter into the NPS simulation. A thorough
analysis of the natural frequencies in the lateral and roll modes at three power settings of
0/20/80 percent airborne were made with respect to the literature prepared by Coleman,
Feingold, and Deutsch. Stability charts were developed from the tailored data of the Sea
King and compared with the modeler’s results. Through these results Rafanello was able
to directly link the classical work with the NPS modeler in the roll and lateral modes of
the H-3.

In his work, Rafanello was also able to verify the conservative nature of
Deutsch’s Criteria as was presented in Robinson’s thesis. He was able to determine that |
Deutsch’s Criteria is conservative in that the critical point for his criteria, or bucket of
each curve, still shows positive damping when analyzed with the NPS simulation. Please

refer to Reference 10 for further analysis.

C. REVIEW OF WORK PERFORMED BY KING

King’s work focused on examining alternative designs for a damperless helicopter
rotor. He explored the potential of eliminating the snubber-damper or damper on
hingeless rotor designs and replacing it with a flexbeam that is modified to possess
nonlinear properties. The NPS ground resonance modeler is well suited to this task in
that it can accurately model nonlinear mechanical properties. King included nonlinear
properties in the blade root to produce potentially acceptable bounded responses in the
parameter region, with the NPS modeler, where linear theory would have predicted
instability. He was also able to determine regions of unacceptable response where linear

theory would have predicted stability.
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King also looked at linearly linked rotor systems and unevenly spaced rotors

using the NPS modeler. By linearly linking the rotors he was able to change the mode
shapes of the rotor blades’ lead/lag motion. This alters the blade natural frequency in the
lead/lag and regressing mode of the rotor. Therefore, by linking the blades, the potential
exists to avoid ground/air resonance by detuning the rotor-body dynamics. This method
avoids ground and air resonance in a similar manner to the nonlinear stiffness approach.
Unevenly spacing the rotor blades produced the same rﬁechanical instabilities as were
produced without altering the rotor configuration, for all cases tested.

- King was further able to use the NPS modeler to simulate the performance of a
1/6 scale Comanche rotor system. The goal of the simulation was to match the fixed
system damping values to the test data and to UMARC (computer simulation modeler
designed at University of Maryland). In this comparison the NPS modeler shows slightly
better results than UMARC at the Jower RPM’’s tested. At higher rotor speed, the

difference between the two simulations is negligible, Figure 6.
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Figure 6. Final NPS simulation results with increased geometric gain [From Ref. 5]

From these.results King concluded that “the NPS modeler shows potential

in

modeling rotors with nonlinear physical parameters and further development should be

considered” [Ref. 5].
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III. MATLAB®

A. INTRODUCTION AND HELP

The NPS modeler has been shown to be effective in modeling coupled rotor-
fuselage motion. In order to help facilitate the functionality of the simulation program,
the inclusion of a symbolic processing toolbox in MATLAB provides a means of refining
the simulation process. The computer programming contained within this thesis is
accomplished entirely in the computer programs MATLAB® and SIMULINK®. Both
programs are developed by Mathworks, Inc. and are run interchangeably. MATLAB® is
an array and matrix based program allowing programming features similar to other
computer programming languages. In addition to its matrix orientation, MATLAB® also
offers Graphical User Interface (GUI) tools and an excellent graphics package.
MATLAB® stores all data as arrays, which lends itself to the manipulation of sets of data
in a wide variety of ways. Recently Mathworks, Inc. has incorporated the Symbolic Math
Toolboxes into MATLAB®’s numeric environment. These toolboxes supplement

MATLAB®’s numeric and graphical facilities with several other types of mathematical

computation:
Facility Covers

Calculus Differentiation, integration, limits, summation, and Taylor
series

Linear Algebra Inverses, determinants, eigenvalues, singular value
decomposition, and canonical forms of symbolic matrices

Simplification Methods of simplifying algebraic expressions

Solution of Symbolic and numerical solutions to algebraic and

Equations differential equations

Solution of Symbolic and numerical solutions to algebraic and

Equations differential equations

Variable-Precision Numerical evaluation of mathematical expressions to any
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Arithmetic specified accuracy

Transforms Fourier, Laplace, z-transform, and corresponding inverse
transforms

Special Mathematical Special functions of classical applied mathematics

Functions

Table 1. MATLAB® Symbolic Math Toolboxes [After Ref. 13]
The computational engine underlying the toolboxes is the kernel of MAPLE®, a
system developed primarily at the University of Waterloo, Canada, and, more recently, at
the Eidgenossiche Technische Hochschule, Ziirich, Switzerland. MAPLE is marketed
and supported by Waterloo Maple, Inc. ‘
Maple V Release 4 was incorporated into MATLAB® 5. There are tow toolboxes.
The basic Symbolic Math Toolbox is a collection of more than one hundred MATLAB®
functions that provide access to the Maple kernel using a syntax and style that is a natural
extension of the MATLAB® language. The basic toolbox also allows you to access
functions in MAPLE®’s linear al gebra package. The Extended Symbolic Math Toolbox
augments this functionality to include access to all nongraphics MAPLE® packages,
MAPLE® programming features, and user defined procedures. With both toolboxes, you
can write your own M-files to access MAPLE® functions and the MAPLE® workspace
[Ref. 13].
In order to determine it you have the Extended Symbolic Math Toolbox a simple
check on the MATLAB® command line will work. The syntax is as follows:
>>maple('with’,’numtheory’)

This will either:
1) list a set of libraries that are loaded or
2) produce the following error:

2?77 'with’(...)" requires extended symbolic toolbox.
Error in ==> Paul P.:Applications :MATLAB 4.2a:Toolbox:Symbolic
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Installer:symbolic:maplemex.mex

Error in ==> Paul P.:Applications :MATLAB 4.2a:Toolbox:Symbolic
Installer:symbolic:maple.m

On line 84 ==> [result,status] = maplemex(statement);

More information about obtaining the Extended Symbolic Math Toolbox may be

obtained from the Mathworks website [www.Mathworks.com].

This thesis is written assuming the reader possesses a basic understanding of
MATLAB®. Additional help with the Symbolic Math Toolbox may be obtained in
several ways. General information about symbolic functions may be obtained by typing,

>> help sym/function.

Here, function, is the name of an “overloaded” MATLAB® numeric function.
This method provides symbolic-specific implementation of the function, using the séme
function name. This provides some consistency in the logically programming process
and the functions used in both MATLAB® and MAPLE®. For example diff is a function
that is used numerically as well as symbolically by MATLAB®.

>> help diff
will produce a different result that

>> help sym/diff

Help for the numeric version informs you that the function name is “overloaded”.
Overloaded methods

>> help char/diff.m

>> help sym/diff.m

Help may also be obtained on MAPLE® commands from the MATLAB® work

space.
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>> mhelp diff

This returns the help page for the MAPLE?® diff function.

B. IDENTIFYING SYMBOLIC VARIABLES IN MATLAB®

Using the Symbolic Math processing capabilities of MATLAB® is different than
using MAPLE®. Of particular difference is the requirement that a variable be identified
as a symbolic variable before it used in MATLAB®. If you have ever received the error

?7?7Undefined function or variable 1’
you have fallen victim to this peculiarity. The exception to this rule is if a variable is the
result of an equation consisting of previously identified symbolic variable. Then the
variable is automaﬁcally assumed to by symbolic.

A symbolic variable may be identified in at least two methods. To designate one
variable as a symbolic expression use

u=sym(‘u’)
or

b = sym(‘beta’).
Here ‘u’ is established as a symbolic variable u and b as beta. These variables are
defaulted to be with respect to x. A variable my also be assigned to an expression,

f =sym(‘a*x"2 + b*x +¢’)
but in this form the Symbolic Math Toolbox does not create variables corresponding to
the terms of the expression, a, b, ¢, Xx. To perform symbolic math operations (e.g.,

integration, differentiation, substitution, etc.) on f, each variable must be created
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eXplicit]y. This may be accomplished in the form above or by typing,
symabcx.

Again these variables are defaulted to be with respect to x. The independent variables is
chosen with the idea that they are typically lower-case letters found at the end of the
Latin alphabet (e.g., X, y, or z). Therefore the closest letter to ‘x’ alphabetically is chosen
as the default symbolic variable. If there are two equally close, the letter later in the
alphabet is chosen. Establishing a variable with respect to another variable may be
accomplished in the following format,

zet = sym(‘zet(t)’).
The variable zet is now defined with respect to ‘t’. This is of particular importance when
performing integration and differentiation as in this thesis. Further explanations of
defining symbolic variables in MATLAB® may be found in reference 13 symbolic

toolbox.

C. SUBSTITUTIONS

When processing expressions using the Symbolic Math Toolbox, the MAPLE®
kernel, accessed byIMATLAB®, does not “a priori”, treat the expression as a number.
MAPLE?® assumes that the symbolic variables as “a priori” indeterminate. That is, they
are purely formal variables with no mathematical properties. Consequently, when
calculating an expression, the variables do not automatically assume a numerical value,
as assigned. For example,

>>Syms Xy z

>>1=x+y*z
>>x=1;
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>>y=3;

>>z=35;

>>1
produces the answer,

l=x"2+y*z
However,

1 = subs(l)
produces;

16
In many cases a specification of the desired form of output is required. If a numerjcal
output is desired for the expression and it requires processing beybnd basic arithmetic,
the ‘subs’ function may be incorporated with the ‘double’ command to produce a double
precision array. Double precision array is the general MATLAB® workspace parameter.
Inquiry into the class of each variable may be accomplished by typing,

>> whos.

A list of the Name, Size, Bytes, and Class of all variable accessible to the workspace are

listed.

D. MAPLE® FUNCTION

The ‘maple function’ allows the user to access MAPLE® functions directly from
the MATLAB® workspace. This function takes sym objects, strings, and doubles as
inputs and returns a symbolic object, character string, or double corresponding to the

class of the input.
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It is important to know the syntax of the calling sequence used by MAPLE®
function to be used. This information may be obtained by using ‘mhelp.” The general
format for using the MAPLE® function is,

A(i,3j) = maple(’coeff’,EOM(i),ddDOFqg(])),
where ‘coeff’ is the maple function to be used. In this case, ‘coeff” sets A(i,j) equal to the
ddDOF(j) coefficients of the expression EOM(i). In some instances the format of the
MAPLE?® function is not consistent with form used in MAPLE®. For example the
MAPLE® function ‘union’ requires the sets to be evaluated to be on either side of the
function instead of in parentheses after it:

setl := setA union setB
instead of,

setl = union(setA,setB).

These forms are not conducive to using the maple function however the proper
form by be accomplished by using strings and converting the syntax. An example of this

is provided in Appendix I with the MATLAB® function munion.
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IV. MAPLE® TO MATLAB® CONVERSION

A brief explanation of the programming tools required to produce the results of
this thesis is provided above. Unfortunately, excessive trial and error went into
establishing the differences in the programming format required to produce the desired
output. The similarities in the two languages proved to be a hindrance rather than

beneficial.

A. DEFINING THE VARIABLES

In order to accomplish the derivation of the equation of motion using Lagrange’s
equation in MATLAB® the following hurdles need to be crossed. MAPLE® allows
variables to be subindexed 1.e.

LY =Qt+9,
where ¢, is subindexed with k, as is commonly used in mathematical text books. In this

case k represent an individual rotor blade and for the three bladed model k = three. This
mathematical formulation is represented as

psi:=Omega*t+Phi[k];
in MAPLE®. MATLAB® uses square brackets, [ ], to repfesent an array or matrix. Asa
result there is no way to represent k in the MATLAB® workspace as it is used in
MAPLE®. A multidimensional array was used to resolve this conflict. A third index is
used to represent the values of each blade. In this form MATLAB® calculates ‘psi’ three
time for a three bladed model. .The syntax in this form is,

Phi = [Phil Phi2 Phi3];

31



Psi = Omega*t + Phi;
But when the variable is called, it is done so with a for loop from 1 to k (k represents the
number of blades).
fori =1:k
ml(:,:,1) = [cos(psi(i) sin(psi(i)) O
-sin(psi(i)) cos(psi(i)) O
001];
end;
m1l is generated 3 times with a different psi each time. This results is psi with Phi, Phi2,

and Phi3 in each successive generation. This accomplishes the necessary ‘place holding’

required for each blade’s energy terms to accomplish the derivation.

B. SET MANIPULATION

As a result of MAPLE®’s dependence on taking derivatives with respect to
independent variables, the time function notation, which represents the degrees of
freedom and the time rates of change of the degrees of freedom, must be converted to
independent variable notation as noted in reference 4. To accomplish this a substitution
of sets was used to switch the necessary terms before and after the differentiation. In
MATLAB® this may be accomplished in two ways. The first is similar to the form used
in the original derivation.

DOFF [ul,u2];

DOFB [zetl, zet2, zet3];

DOF = [DOFF, DOFB];

dDOF diff (DOF, t) ;
ddDOF = diff (dDOF, t) ;

noun

syms q1 q2 q3 q4 q5 dql dq2 dq3 dg4 dq5 ddql ddqg2 ddq3
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ddg4 ddgb

DOFg = [ gl g2 g3 a4 q5];

dDOFg = [ dgl dg2 dg3 dg4 dgb5];
ddDOFg = [ ddgl ddg2 ddg3 ddgd ddgbli;
setl = [];

set2 = [1;

for i=1:5 % size of DOFqg vector

setl = [setl maple(’‘'=‘’,DOF(i),DOFqg(i)) 1;
setl = [setl maple(’‘='’,dDOF(i),dDOFqg(i)) 1;
setl = [setl maple(’‘'='’,ddDOF (i) ,ddDOFg(i)) 1;
set?2 = [set2 maple(’'‘='',DOFg(i),DOF(i)) 1; .

set?2 [set2 maple(’®
set2 = [set2 maple(’’
end
setl = maple(’convert’,6 setl, 'set’);
set2 maple(’convert’,set2, 'set’);

'’,dDOFg (i) ,dDOF (1)) ];
'’ ,ddDOFg (i) ,ddDOF (1)) 1;

This method defines the terms required as symbolic variables. It defines the sets
and then uses a maple function to set the terms equal to each other for later substitution.
It then uses another maple function to convert the sets into a form that is recognizable by
MATLAB®.

The second method uses the ‘subs’ command local to the MATLAB® workspace.
By establishing the necessary variables into an array of ‘old’ and ‘new’ terms they can be
switched term for term in a given variable (array).

DOFF [ul,u2];

DOFB [zetl, zet2, zet3];

‘DOF = [DOFF, DOFB];

dDOF = diff (DOF, t);

ddDOF = diff (dDOF, t) ;
tempDOF = [DOF dDOF ddbDOF] ;

syms gl g2 g3 g4 g5 dgl dg2 dg3 dg4 dg5 ddgl ddg2 ddg3
ddg4 ddgb

DOFg = [ gl g2 a3 g4 g51;
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dDOFg = [ dgl dg2 dg3 dqg4 dg51];

ddDOFg = [ ddgl ddg2 ddg3 ddg4 ddgs];

tempDOFqg = [DOFg dDOFqg ddDOFql;

Temp = subs (T, dDOF,dDOFq) ;
T, ul, u2, zetl, zet2, zet3 are predefined arrays and tempDOFq is used in a later portion
of the derivation. The speed required to run each method varies depending on the
operation to be accomplished. For a simple substitution, the MATLAB® ‘subs’ function
proved to be the quicker method but when larger symbolic terms were involved the first
method proved to be the quicker solution. Therefore an optimization was done to

determine the optimum combination of the two methods in order to minimize the

computational time required to complete the simulation.

C. STATE DERIVATIVE CALCULATION

Using the Symbolic Math Toolbox in MATLAB allows calculation of the state
derivatives without first creating a ‘B’ array, as is necessary with the MAPLE® version.’
The B array is used to convert the output to C or Fortran code, before it is placed in a
MATLAB® function. By avoiding this step, both the MATLAB® function and the
SIMULINK® functlion can call the state derivative directly from the workspace. This is
extremely beneficial in that it eliminates any errors associated with converting generated
code to a format that usable in SIMULINK?®.. It eliminates extra steps in the setup
process, helps facilitate simulations, and reduces the time taken to convert the generated

code.
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D. VARIABLE ROTOR BLADE MODELING

After the code was found to run successfully in SIMULINK®, it was further
adjusted to allow for a variation in the number of rotor blades. In the MAPLE® vefsion
this was self-contained by using the subindex ‘k’. In the MATLAB® version, without the
capability of subindexing, each array was built up as a temporary array, capable of
deriving a seven bladed model, then only the necessary terms were used to complete the

derivation.

E. COMPLEX MODEL

The complex model as derived by Robinson, [Ref. 4], was converted into a
MATLAB® function, Appendix E. This model is very applicable to future helicopter
design due t;> the added degrees of freedom. It is the complex model and variations of it
that will allow the designer to examine the stability characteristics of rotor systems
without expensive and time consuming tests in a wind tunnel. The flexibility in alteing
the degrees of freedom and accessing the equations of motion with each time step are
what make the simulation useful beyond the calculations performed using the simple
model. Additionally the inclusion of nonlinear terms opens a whole new field of
dynamic modeling to be considered. Some of the possible areas of exploration are
damper springs, duffing springs, and the stability characteristics of varying the length

rotor blades.

F. MAPLE® PROCEDURE

Reference 13 describes a method to input a MAPLE® symbolic derivation into

the MATLAB® workspace. Creating a source file using a ‘maple procedure’ the
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Extended Symbolic Math Toolbox is capable of reading the source file. Unfortunately
the results produced little to no gain due to the process of changing the source code
identifier. This process was further complicated due to windows automatically
associating the file as a text file or attaching its own identifier to file. Accessing the
sources code was eventually possible by changing the file in DOS mode. This process
could possibly be simplified using a UNIX based system however it does not produce the

ultimately desired results of this thesis.
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V. SIMULATION MODEL

A. ORIGINAL SIMULINK® S-FUNCTION

Introduction of the rotor-fuselage dynamics into the Simulink® simulation is
accomplished through the use of a Simulink® S-function. The S-function is a user
defined Simulink® block that outputs the rotor time histories as functions of the user
defined rotor and fuselage parameters. SIMULINK?® is a convenient Graphical User
Interface (GUI) that performs simulation time integration, allows user input changes
between simulations, and provides the user with graphical output.

SIMULINK?'D accesses an S-function through is numerical integration routines.
The routines make calls to the S-function for specific information, the type of information
returned is dependent on the value of a flag variable sent by the integratioﬁ routine. For
example,

flag =0 S-function returns sizes of parameters and initial conditions,

flag=1 S-function returns state derivatives dx/dt,

flag=3 S-function returns outputs.
The section of the S-function which computes the derivatives at each time step is the
section which calls the equations of motion.

The Lagrangian derivation of the equations of motion generated the equations in

the form,
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where X is a vector of displacement degrees of freedom of the system. The output of the

derivation was further manipulated into the equivalent form,

AG %0 = FG.%.0)
where A is an NxN matrix and f is an Nx1 vector, with N = number of degrees of

freedom of the system. This is possible since the equations are quasi-linear in the second

derivative terms, i.e., no terms of types such as X,or sin( x ), etc. This form can then be

transformed from N second order equations to 2N first order equations as follows,

X=w
w=[Al'f

These equations are evaluated at each time step in a numerical simulation to give
the state derivatives. This study uses a Runge-Kutta algorithm in SIMULINK® to solve
the numerical ordinary differential equations. The Runge-Kutta algorithm generally
outperforms other schemes for systems of nonlinear ordinary differential equations which
are not too stiff and they handle discontinuities well [Ref. 14].

A Coleman-like 3-bladed hub-rotor model was used for the initial simulation
model. It provided for linear stiffness and damping, quadratic damping, and cubic
stiffness in the blade degrees of freedom. Other, simulations for damperless rotor
analysis have been created for four-blade and five-blade hub-rotor simulations. Table 2
provides a break down of the variables used in the S-function and Figure 7 shows the

SIMULINK® model utilized for the simple model simulation.
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Rotor Blade Mass

S PARAME]

RN

mb(1) mb(2) mbi3)

mass

Fuselage effective in x and y direction M(1) M(2) mass
Distance from hinge to center of mass of blade R length
Rotor Speed Omega rad/sec
Hinge Offset el length
Angle at which lead-lag stops engage z radians
Azimuth phase angle of rotor blade Phi(1) Phi(2) Phi(3) radians
Lead-lag linear damping coefficient Czeta(1) Czeta(2) Czeta(3)) moment/(rad/sec)
Lead-lag nonlinear damping coefficient Vzeta(1) Vzeta(2) Vzeta(3) moment/(rad/sec)”
Fuselage linear damping coefficient in x and y direction c(1) c(2) force/(length/sec)
Fuselage nonlinear damping coefficient in x and y v(1) v(2) force/(length/sec)*
direction
Lead-lag linear spring coefficient Ke(1) Ke(2) Ke(3) moment/rad
Lead-lag nonlinear spring coefficient Kd(1) Kd(2) Kd(3) moment/rad”
Lead-lag stop spring coefficient Ks(1) Ks(2) Ks(3) moment/rad
Effective fuselage stiffness in the x and y directions K(1) K(2) force/length
Fuselage states initial displacement conditions xXi xYi length
Fuselage states initial rate conditions xrXi xrYi length/sec
Blade states initial displacement conditions x1i x2i x3i rad
xri xr2i xr3i xréi rad/sec

Blade states initial rate conditions

Table 2. Parameter inputs for simple model

S -
>
>
>
>
b 3-blade rotor-pylon (NL) —p| Demux
Helo
Mux
Mux
Demux

Figure 7. SIMULINK® diagram of NPS simple model

Fuselage Displacement
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B. MODIFICATIONS TO SIMULINK® S-FUNCTION

Of significant importance in this and future versions of the simulation is
MATLAB®s definition of variables. From the original MATLAB® function where the B
matrix was input as optimized C or Fortran code, the variables in the equations of motion
were in array format. Using the Symbolic Math Toolbox requires the variables to be
defined as symbolic. In doing so, an additional substitution step is required to solve the
state deﬁ;/atives as real variables. This substitution may be accomplished in either the
derivation function or the MATLAB® S-function. A coordination between the two
functions is required in order to properly derive the equations of motion and still run the
simulation. For example time (t) is needed to derive the equations of motion, however it
is not recognized in MATLAB® unless it is defined as a symbolic variable prior to the
derivation, but once it is defined as a symbolic variable an actual value for ‘t’ (each time
step) may not be substituted in to the simulation model until it is redefined as a ‘double
array’ variable.

Using a MATLAB® function to derive the equations of motion allows the model
to call the derivation function with each time step. Unfortunately this process is very
time consuming and severally slows the simulation process. The potential exists to cut
and past the equations of motion into an S-function, in order to reduce the simulation run
time. This method was not used in an attempt to maintain the integrity of the function
calling process. Future thesis may have the opportunity to optimize this process. It
should be noted that the cut and paste method would still significantly reduce the time,

labor, and possible errors associated with converting the MAPLE® code.
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As an alternative method to deriving the equation of motion with each time step, a
data file was created with the state derivatives input from the derivation function. The
goal of this setup was to reduce the computational time. This method was not found to be
as effective as anticipated because the process still required the derived variables to be
converted to ‘double array’ variables before value substitution in the S-function

workspace.

C. USING THE SIMULINK MODEL

Six files are required to run the simulation. For the three bladed simple model the
files are: simple3.m, helo3b5.m, simple.m, simple.mdl, signum.m, signuml.m, abs.m.
From the MATLAB® command window type in

>> simple
a figure will appear identical to Figure 7. The operator may begin the simulation by
“clicking” on the arrow @ ) on the menu bar. Two figures will be displayed, Fuselage
Dispiacemcnt and Lead-lag Displacement. The Fuselage Displacement figure represents
the position of the fuselage in the x/y plane with respect time. The Lead-lag
Displacement figure represents each blades position with respect to time. From here the
operator can deduce whether the model is stable or unstable.

The rotor parameters may be changed by “double-clicking” on the box titled “3-
blade rotor-pylon {NL}. A new window will appear containing the “Block Parameters.”
Each of these terms may be changed to effect the desired response from the model. An
explanation of these terms is included in Table 2. Further explanation of using the NPS

simulation model may be obtained in reference 17.
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VI. RESULTS

A. EQUATIONS OF MOTION

The equations of motion calculated for the simple model by MATLAB®,
Appendix A, are equivalent to the equations calculated by Robinson [Ref. 4]. As a result |
the plots produced by SIMULINK® display the same time history plots, Figures 8, 9.

The derivation of the equations of motion using MATLAB® Symbolic Math Toolbox are

complete.
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Lead-Lag Displacement Time Histories

\

/
J

v/

IaVAN /f\

VY
Y
X ¥

0
<\/

2009
\54\;;<v

P
P

0.3

1 1
— QY]
o o

(Bep) 9‘ejPuy Be-pes epelg

]
®
Q@

0.9

0.8

0.7

0.6

0.5
Time (sec)

Figure 9. Lead-Lag displacement for unstable region

062 03 04

0.1

-0.4



VII. CONCLUSIONS AND RECOMMENDATIONS

Previous work by Robinson and King was based on a derivation in which the
equations of motion were derived in MAPLE® then converted into Fortran or C where the
equations of fnotion were further converted in a MATLAB® usable format (Method A).
The focus of this thesis was to derive the equations of motion using the Symbolic Math
Toolbox in MATLAB®(Method B). This derivation allows direct communication
between the derivation function and the simulation thus eliminating user interface in the
simulation process.

Based on the simulation process utilized in this thesis, Method B, deriving the
equations of motion using MATLAB® was found to possess both advantages and

disadvantages.

ADVANTAGES
- No required conversion of equations of motion to MATLAB® readable code
- Eliminates “user” interface

- Single software‘package

DISADVANTAGES

- Time consuming

- Symbolic processing format is not as usable as MAPLE®
- Does not provide instant feedback to equation processing

- Requires additional substitution step
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TRADEOFF

It was found, using Method B, that eliminating user interface from the simulation

process incurs a substantial run time penalty

- With minor user interface, modification to Method B eliminates the time penalty
incurred

- The ﬁﬁnor user interface still reduces the potential for error associated with code

conversion

- Modification to Method B maintains a comparable run to Method A

Expanding on the “Tradeoff Option”, if the user intends to utilize the NPS modeler in the
form in which the simulation calls the derivation function internally, Method B, then a
run time penalty is incurred. However if modifications to this process are acceptable, the
result is a reduction in potential errors associated with code conversion and a savings in
the time required to perform this process.

For example, potential modification to the simulation process used in Method B is
the option of “cutting” the resultant matrices from the MATLAB® workspace and
“pasting” them into the simulation workspace. This “cut and paste” method is similar to
deriving the equations of motion in Method A. However, it eliminates the process of
converting the code from Fortran or C to MATLAB® executable code thus reducing

“user” interaction and eliminating the potential for user contamination of data.
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Future emphasis should be placed on optimizing the passing of variables between
the MATLAB® derivation function and the simulation process. Continued analysis of
this process may determine a more effective means of substituting the required variables
and reduce the time to run the simulation. With further optiinization of the NPS modeler
in the MATLAB® format and the continued increase in computational processing speeds,

eliminating user interaction between the derivation and simulation process is a realistic

goal.
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APPENDIX A. MATLAB® EQUATIONS OF MOTION FOR SIMPLE INPLANE
(COLEMAN) MODEL WITH THREE ROTOR BLADES

pretty(EOM)

[ 2
[1/2 vl dql abs(l, dgl) + v1dql|dql |+ Ml ddql

2
- 2mb2 R %4 Omega cos(q4) dg4 - mb2 R %4 Omega cos(q4)

~ 2 2
- mbl R %6 Omega cos(g3) - mbl R %6 cos(q3) dg3

2
- mbl R %6 sin(g3) ddq3 + mb2 R %3 Omega sin(q4)

2
+mb2 R %3 sin(q4) dg4 - mb2 R %3 cos(q4) ddgq4

2 2
-mb3 R %2 Omega cos(q5) - mb3 R %2 cos(q5) dq5

2
-mb3 R %2 sin(q5) ddq5 + mbl R %5 Omega sin(q3)

2
+ mbl R %>5 sin(q3) dg3 - mb3 R %! cos(q5) ddg5

2
- mbl R %S5 cos(q3) ddg3 + mb3 R %1 Omega sin(q5)

2 2
+mb3 R %1 sin(q5) dg5 - mb2 R %4 cos(q4) dqd

- mb2 R %4 sin(q4) ddg4 + K1 g1 + mb1 ddql + mb2 ddql +c1 dql
+mb3 ddql + 2 mbl R %5 Omega sin(q3) dq3
- 2mbl R %6 Omega cos(q3) dg3 + 2 mb3 R %1 Omega sin(q5) dg5

-2 mb3 R %2 Omega cos(q5) dgq5 + 2 mb2 R %3 Omega sin(q4) dq4

53



2 2 2
-mb3 el %2 Omega - mb2 el %4 Omega - mbl el %6 Omega ,

2 2
1/2 v2 dq2 abs(l, dq2) + v2dqg2 |dg2 | - mb3 R %1 Omega cos(q5)

2
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%1

%2
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%5

%6

3 2 2
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:=sin(Omega t + Phi3)
:=cos(Omega t + Phi3)
:= sin(Omega t + Phi2)
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= sin(Omega t + Phil)
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1/2*M(1) *diff(ul,t)”2 + 1/2*M(2)*d
ddDOF = diff (dDOF, t)

1/2*%K(1)*ul™2 + 1/2*K(2)*u2”2

DF = 1/2*c(1)*(diff(ul,t))"2 +

[cl c2]
[ul u2 u3]

Generalized forces on general

DERIVATION

EQUATION

1/2*c(2)* (diff(u2,t))"2+1/2*v(1l)*(diff(ul,t)) 2*abs(diff (ul

CE))+1/2*%v (2) * (diff(u2,t) ) "2*%abs(diff(u2,t))

syms K1 K2 cl ¢2 vl v2 M1 M2

syms F1 F2 F3 F4 F5 u3

TF
UF

u
F1

F
DOFF
DOFB
DOF
dDOF



r

-
4

4

[ dgl dg2 dg3 dg4 dgb5]
[ ddgl ddg2 ddg3 ddg4 ddgs]

[ gl g2 g3 g4 g5]

syms gl g2 g3 g4 g5 dgl dg2 dg3 dg4 dg5 ddgl ddg2 ddg3 ddag4
Substition set construction

ddgb
dDOFqg =
ddDOFqg =

DOFg

o
oe
e
oe

oo
oo
oo

oe
[
oe
o
oe
o0
oo
oo
o°
oe
o
o0
oe
o°
ov
oe
oo
o°
o°
oe
o°
oo
o
oe
oo
oo
[
oe
Qe
oe
oe
oe
oe
oe
oe
oe
o0
de
oe
ae

e
ae
e
oe
oo
oo
e
a0
oe

’

1
]

1
))
1;

i
1;

)) ]

i
) ,dDOF (1))
i) ,ddDOF (1))

) ,dDOFqg(i))
) , AdDOFqg (

i
[set2 maple(’*="',DOFqg(i),DOF (1))

7

i

i
[set2 maple(’‘'='"',ddDOFqg(

[setl maple(’ ="', ddDOF (

size of DOFg vector
[setl maple(’‘="’,DOF (i) ,DOFqg/(

[setl maple(’*='"',dDOF (
[set2 maple(’ ‘="', dDOFq/(

%

4
14

5

maple(’'convert’, setl, ‘set’)

set2 = maple(’convert’, set2, ‘'set’);

[]
[]

setl
set?2
for i=1
setl
setl
setl
set?2
set2
set2
end
setl =

o0
oo
oo
oo
o

o0
[ 4
oo
oo
[
o°
o°
oe
oo
oe
oe
e

oe
(o34
oo
oo
oQ
oo
o
oo
o°
o°
a°
oo
oY
o®
oo
o0
oo
oe
o°
[
o
oo
oo
o
o0
oo
e
a0
oo
oe
oo
o0

[
[
o0
oe
oo
Q0
oo

:,:,1);
)

1:3
T+TBk (.

= size (DOFB) ;
U = U+UBk({

TF;
UF;
D1 = DF;
[1,n]
for i
T

(XN

-

60

7

’

D1+DBk (1)

maple(’subs’,setl,T)
1:5

= size(DOF) ;

1

D1
Switch of time dependent terms

Complete EOM

end

Temp
[1,n]
for



‘diff (Temp, dDOFq(i))

.
4

templ
temp?2

maple(’'subs’, set2, templ) ;
temp3 = diff (temp2,t)

L1

’

maple(’subs’,setl, temp3)

diff (Temp,DOFq(i)) ;

tempL3

L3

.
7

L2

1

maple(’subs’, setl,U)

diff (tempL3,DOFq(i))

tempL4

check dimensions of DOFg

B

17

.
7

maple(’'subs’,setl,D1l)

check dimension of DOFqg

%

diff (tempL4,dDOFqg(i));

EOM (1)
of EOM and F

end

L4

check dimension

%

simplify (L1-L2+L3+L4-F(i));

Elimination of excess terms

)
o

[ signuml(1l,g3-z) signuml(l,qgé4-z) signuml(l,g5-z)

signuml (1,q3+z) signuml(1l,qgé4+z)

tempS

signuml (1, g5+z)

maple(’abs’,1,dg3) maple(’abs’,1l,dgd4) maple(‘abs’,1,dqg5)

-
!’

]

maple(‘abs’,1,dql) maple(’abs’,1,dqg2)

000000O0O0COO0CO1;

[
[1:

temp0 =
setS

11

=1:

for i

’

]

‘L tempS (i), tempO(i))

[setS maple(’"

setS

end

maple(’convert’, setS, ‘set’);

setS

e ao
oo o0
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o0 o°
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e o
90 5 ge
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a0 = d°
o O oe
&0 M 00
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o 00
A 1 00
o0 Wi o°
oo o0
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e m d0
o0 o0
o0 ol
o0 + 0P
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o0 [e3d
de [ d°
o0 [ e
o0 M o°
o° o
o0 1] o
a0 2 oe
o° [} o
00 1Y o°
o34 o
e oe
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oY [0 Y
o34 o
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e o0
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[y

Determine second derivative terms

1:n

for

1:n

for j

maple(’coeff’ ,EOM(1i),ddDOFqg(])) ;

A(i,3)

i) ) ;

i,3

maple(’subs’,setS,A(

(1,3)

A
end

end

= ddDOFg*A;

Ax2dot

Eliminate second derivative terms from EOM

o
°
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1

for 1

.
’

(EOM (i) -Ax2dot (1))
= maple(’subs’,setS,f(i));

£(1)

(1)

)));

lify(£(1

imp

-(s

end

Generate state vector

%

syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

[x1 x2 x3 x4 x5];

Xldot

.
!’

= [x6 x7 x8 x9 x10]
[X1temp Xldot]

Xltemp
X1

7

7

[DOFg dDOFq]

DOFgtemp =

o0

oo
oo

o0
o
o®
oo
oP
oo

o®
oe
oe

oo
o®
[
o4
oo
e
oo
oo
Qo
o0
o
o
oo
oo
oo
oe
o©
oe
oo
e
ov
oe
a0

a0
o0
oe
oo
o\
o°
oo
oo
oe
ov
oo
oo
e
oo
ov
oe
oy
oo
oo

Convert terms to state vector form

S
<

[]

setX
for

=1:10
setX =

.
17

]

[setX maple(’'='’,DOFgtemp (i) ,X1(i))

maple(‘convert’,setX, 'set’);

end
setX

maple(’subs’, setX,A);

Al

maple(’subs’,setX, f);

f1

from input ‘u’

Itl

Eliminate wvariable

.
!

[ul u2 u3lj]
subs (Al,u,ut)

syms ul u2 u3l

ut
Al

7

-
7

subs(fl,u,ut)

fl =
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APPENDIX C. SIMULINK® S-FUNCTION FOR SIMPLE INPLANE
(COLEMAN) MODEL WITH THREE ROTOR BLADES

function [sys, x0] = helo3b5(t,x,u,flag,I1,I2,I3,I4,I5,1I6);

function [sys, x0] =
elo3bA(t,x,u,flag,I1,I2,13,1I4,1I5,1I6)

S-function arguments:

t = time

X = state wvector

u = 1nput vector

flag = switch used by numerical integration

simulation)
routine to access certain parts of the s-
unction

S-function input parameters:

I1 = [mb(1l),mo(2),mb(3),M(1),M(2)]
I2 = [R,Omega,el, z]

I3 = [Phi(1l),Phi(2),Phi(3)]

14 = [c(l),c(2),v(1),v(2),

Czeta(l),Czeta(2),Czeta(3),
Vzeta(l) ,Vzeta(2),Vzeta(3)]

I5 = [Re(l),Ke(2),Ke(3),
Kd(1l),Kd(2),Kd(3),
Ks{l),Ks(2),Ks(3),
K{1l) ,K(2)]

H
()}
I

[xrXi,xrYi,xrli,xr2i,xr3i,
xX1,xY1i,x1i,x2i,x31]

o P P O° OC dP IC OP P OC JP OP P OP P OO JC P AP P OP O° O Hh d9 ~ 90 P OC JP 0P OP P I oP

S-function to represent dynamics of 3 bladed coupled
rotoxr-
% fuselage model which considers only inplane degrees of
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% freedom, i.e., x and y translational fuselage degrees of
freedom
% and lead-lag rotor blade degrees of freedom.

% Explaination of variables:

% __________________________

o

(54

% mb -> mass of blade

% M -> effective mass of fuselage

% R -> distance from lead-lag hinge to blade center
of mass

% el -> blade hinge offset

% Omega -> rotor speed

% z -> angle at which blade hits stops

% Phi -> blade phase angle w.r.t. azimuth postion

% c -> fuselage linear damping

% v -> fuselage hydraulic damping

% Czeta -> blade linear damping

% Vzeta -> = Dblade hydraulic damping

% K -> effective stiffness of fuselage (landing
gear stiffness)

% Ke -> blade elastic spring constant

% Kd -> blade duffing spring constant

% Ks -> blade stop effective spring constant

% xr_ _i -> initial rate

% x_ _i1i -> initial displacement

%

2AULLO OO Q0000000000000 0000002950000000000009009090000000020,
VDPOOVO0OO0ODODVDODO0OO0ODVO0OOVDDVTDVO0OOVDVO0O0O0CDVDOVOOO0ODVDOVOOVDO0OO0OO0O0OOO0DOODOO0ODOO0O0O0D000D0OD00DDOD
% Define input parameters
2200000000000000090000000800000000000000000600000000009%0000
CQOOV0VO0O0O0O0VVUVOVOVDVDVOVOVOVOVOVDVOVO0O0VO0OVVOCVVOVVOOVDVDDVDOVOVOVOODVDOOVDOODV0V0COCOD000D

mbl=I1(1);mb2=I1(2);mb3=I1(3);M1=I11(4);M2=I1(5) ;
$R=I2 (1) ;0Omega=I2(2);el=I2(3);z=I12(4);
%$Phil=I3(1);Phi2=I3(2);Phi3=I3(3);
cl=T4(1);c2=I4(2);v1=I4(3);v2=I4(4);
%Czetal=I4(5);Czetal2=I4(6);Czetal=I4(7);
FVzetal=I4(8) ;Vzeta2=I4(9) ;Vzetal3l=I4(10);

%$Kel=I5(1) ;Ke2=15(2);Ke3=I5(3);

%KA1=1I5(4) ;Kd2=I5(5) ;KA3=I5(6);
BKsl=I5(7);Ks2=I5(8);Ks3=I5(9);

$K1=I5(10);K2=I5(11);

XrXi=T6(1) ;xxrY¥i=I6(2) ;xrl1li=I6(3);xr2i=I6(4) ;xr3i=I6(5);
XXi=TI6(6) ;xXYi=I6(7);x11i=I6(8);x2i=I6(9);x3i=I6(10);
5550552553532 55555%5%5555%%5%%%%%%%
% S-function flag conditionals



if flag == 0

sys=[10,0,10,3,0,0];
x0=[eri,eri,xrli,xr2i,xr3i,xXi,in,xli,x2i,x3i];

elseif abs(flag) ==

% Calculate derivatives

[Al, f1] = simple3;

xl = x(1); x2 = x(2); x3 = x(3); x4 = x(4); x5 = x(5); x6
x(6); x7 = x(7); x8 = x(8); x9 = x(9); x10 = x(10);

ul = u(l); u2 = u(2); u3d = u(3);

x = subs(x);

u
fl = subs(fl);
Al = subs(Al);

sys = zeros(l,2*5);
sys(l:5) = A1\fl.’;
sys(6:10) = x(1:5);

% Output states

elseif abs(flag) ==

oe

psi=Omega*t;

psil=psi+Phi{l) ;
psi2=psi+Phi(2);
psil3=psi+Phi(3);

o0 oP

oe

% xcl=el*cos(psil)+R*cos{psil+x(8));

% xc2=el*cos (psi2)+R*cos (psi2+x(9));

% xc3=el*cos(psi3)+R*cos(psi3+x(10)};

% vel=el*gsin(psil)+R*sin{psil+x(8));

% yc2=el*sin(psi2)+R*sin{psi2+x(9));

% yce3=el*sin{psi3)+R*sin{psi3+x(10));

% xc={mb (1) *xcl+mb (2) *xc2+mb (3) *xc3) / (sum(mb) ) ;
% ye={mb (1) *ycl+mb (2) *yc2+mb{(3) *yc3)/ (sum(mb) ) ;

oe

Mag=sqgrt (xc*2+yc”™2) ;
if (xc < 0 & yc < 0) | (yc < 0)
theta=pi+atan(yc/xc) ;

oe

o1
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o

else
theta=atan(yc/xc) ;

end

gamma=theta+pi;

alphal=(psil/ (2*pi)-floor(psil/ (2*pi))) *2*pi;
alpha2=(psi2/(2*pi)-floor(psi2/ (2*pi))) *2*pi;
alpha3=(psi3/(2*pi)-floor(psi3/ (2*pi))) *2*pi;
sys(1:10)=x;

sys(ll) =R*Mag*sin(gamma-alphal) ;

oP g0 oe

o154

a0 0P

oe

% sys(1l2)=R*Mag*sin(gamma-alphal) ;
% sys( 3)=R*Mag*sin (gamma-alpha3l) ;
% sys(14)=theta;
else
sys = [];
end
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le()

simp

MOTION FOR A HELICOPTER IN GROUND RESONANCE

WITH VARIABLE NUMBERS OF BLADES
CONSIDERING ONLY INPLANE DEGREES OF FREEDOM

f1]

=

% EQUATIONS OF

APPENDIX D. MATLAB® WORKSHEET FOR SIMPLE INPLANE MOTION
function [Al,

o)
o

H

0]

D

o
oe Q [ o)} 00
oe 0 O o o0
oe - - 00
o0 Q ER) ko] o0
00 o] 0 c D oe
oe [ (e} © o 50
oo — o, —~ © 00
oe Q ~ in] oQ
oe O 03] oe
00 0 n P ® o 00
oe 4 Q3 )] o] o
o0 [OJ = © 440 oo
oo [0} N | o oo 00
o0 o)} n N [0} G © O 00
o [0 [y le)] n NI I o
oe O A n o 3 n n-A oe
oP T O N I - 4 OO oM o0
oe i EaBE S I e IO o)} O 0 O 0P
oe v O Ko w i = oo O VW 00
oe n o Y ood @ -~ O oe
o0 =3 o O - QT O Q o0, 0 o0
o0 o T 2 g g E ST o0
oo e} 9 © ©C U -+ © W0 e e et 00
e 4l © O - O 0 -H QT O Mo W oo
oe o o 0] Q — & o o U )
oe — Yy O4H 3@ 0w n n o oo
oe 0 4 S a8 8 60 -A W t op
oe O n g e} O G O Y4 — - U oW 00
oe O @ O - a0 4 3P A g 0 oe
o0 © £ H O d O-A>xOo © 0 DA 00
oo — Y Do 2 0n—~.90 Yy 0nw o 00
o0 QO o o O s oo o © w4 O oP
o > 0 R B © TR I s S ) B () NPT IV — 3P oe
oe LY S n o oo+ .G A O C w 00
oo o B o © © NS} o0
00 |G (3} v 4 0 O~~~ O U O (OB O] o0
oe n o 4w T O0O—~T O VT T O T T T 00
oe 0N Y4 m T P O@® 0N WO © W C O © o0
oe © 4t - —~ O O 3 3 4y —~ 00
o g 0T Q84 OCAaOHR Q0 Q.9 .Q o0
oe — 00
oe n oP
0P 0 00
oe 0] oe
o AN A A AANANAANAANAANGCAANA (-]
oe [ T [ o0
oe Y oe
oe v - 00
00 1)} © G © i) 0o
oe 0] o)} RS 10} oe
o0 (] 0] - U o oe
oe m E - B £ NN 4 0T ® oP
oe =M OO NMOU POP>MGNMININ o
o 44 0] oo
0° 00 60 00 A0 O JC 00 A0 O A° I G S0 SC ) dC JC OP SO OO

zet3 =

!

4

number of blades
% blade position angle

o

sym(’zet2(t)’)

67

zet2

!’

k) ;

[Phil Phi2 Phi3 Phi4 Phi5 Phi6 Phi7]

Phit (1
Omega*t + Phi

Define transformation variables

zetl = sym(’zetl(t)’);

sym(’zet3(t)’)

clear
clc

%
Phit
Phi
psi



zetb = sym(’zet5(t)’); zeté6

sym(‘zetd(t)’);

zetd

sym(’'zet6(t)’);

zet7
zett
zet

sym(‘zet7(t)");

[zetl zet2 zet3 zetd zet5 zet6 zet7];

zett (1

.
’

k)

-

COORDINATE TRANSFORMATIONS

(%4

oX

1

for i

sin(psi(i)) O

[cos(psi(i))

:,:,1)
-sin(psi(i)) cos(psi(i))
0 0 1]

.

ml (

0

first transformation

sin(zet(i)) 0

%

4

[cos(zet (1))

-sin(zet(i)) cos(zet(i))

00 1];

:,:,1)

m2 (

0

second transformation

[)
°

end

=ml(:).";

ml(:)
m2 (

=m2(:).";

:)
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oe
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oe
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O
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oe
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oo
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(TBk)

Kinetic energy of rotor blade

o)
o

syms el R mbl mb2 mb3 mb4 mb5 mbé6 mb7

mbt
mb

7

[mbl mb2 mb3 mb4 mb5 mbé mb7]

mbt (1:k)
ul = sym(’ul(t)’); u2 = sym(‘u2(t)’); u3l3 = sym('u3d(t)’); ud

= sym(’'ud(t)’);

1

sym(‘u5(t)’); ub = sym('u6(t)’); u7 = sym('u7(t)’);

.
7

= [ul u2 0]
[el 0 0]
[R 0 0]

rhoHI_T
rhoBuH

7

14

rhoPBd =

1:k
rhoBuH_I

for

t,:,1);

rhoBuH*ml (

rhoPBd_T

.o

i) *m2 (

7 1

.

= rhoPBd*ml (
simplify(

’

_I).r

d_I + rhoHI

rhoBuH_ T + rhoPB

rho
V{

diff(rho,t).”

i)

-
cr -2

i)~2);

1)72 + V(2,:,

7 =7

1/2*mb (1) *(V(1

i)

« g * g

TBk (

end
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(UBk)

:k

[Ksl Ks2 Ks3 Ks4 Ks5 Ks6 Ks7];
1
UBkl = 1/2*Ke(i)*zet(1)"2;

[Kdl Kd2 Kd3 Kd4 Kd5 Kd6 Kd7];
Ks = Kst(1l:k);

[Kel Ke2 Ke3 Ked Ke5 Ke6 Ke7];
Kd = Rdt(1l:k);

Ke = Ket(1l:k);

UBk2 = 1/4*Kd(i)*zet(i)"4;

Pbtential energy or rotor blade
syms Kel Ke2 Ke3 Ked Ke5 Keb6 Ke7
syms Kdl Kd2 Kd3 Kd4 Kd5 Kdé Kd7
syms Ksl Ks2 Ks3 Ks4 Ks5 Ks6 Ks7 z

Ket
Kdt
Kst
for i

[
°

UBk3 = 1/4*Ks(i)*signum(zet(i)-z)*(zet (i) 2+z2"2-
2*zet (i) *z)+1/4*Ks{i) *signum(zet (i) +z) *{-zet (i) "2-2"2~

2*zet (1) *z)+1/2*Ks (i) *zet (1)"2 + 1/2*Ks(1)*z"2;

(]

of

(DBk)

1/2*Czeta(i) *(diff(zet(i),t))"2 +
69

Vzeta (i) *(diff(zet(i),t))"2*abs(diff(zet(1),t));

end

= UBk1l + UBk2;

[Vzetal Vzeta2 Vzetal Vzetad Vzeta5 Vzetab

[Czetal Czeta2 Czeta3 Czetad Czetab Czetab

Czetat(1l:k);
Vzetat (1l:k);

1:3

DBk (1)

7

UBk (1)

end
Dissapative function of rotor blades

syms Czetal Czeta2 Czeta3 Czetad Czeta5 Czetab Czeta”
syms Vzetal Vzeta22 Vzetal3 Vzetad Vzetab Vzetab Vzeta’

syms DB1 DB2 DB3 DB4 DB5 DB6 DB7

Czetat
Czeta7]l;
Czeta
Vzetat
Vzeta7]
Vzeta
for i

%



/ Dissapative

H)

1 energy (U

ENERGY OF HUB
) / Potentia

£

by

(DH)

Kinetic energy T

function

O/D
o
o0
oo
oo
o°
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oo
0P
oe
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o
oP
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00
o0
oe
o0
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o°
o
oo
00
o0
o0
O/o
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o
o0
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o0
o0
oe
0/0
oe
oo
o0
oo
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Y
o0
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oo
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oo
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oo
oe
o0
o0
o0
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.
7
1
7
.
’

[cl c2]
[vl v2]
[M1 M2]
[K1 K2]

syms K1 K2 ¢l c2 vl v2 M1 M2

Cc
v
M
K

oP

o0

oQ

oe

.
’

ff(u2,t) "2

.

1

.
7

’

k)
F2

1/2*M (1) *diff(ul,t)”2 + 1/2*M(2)*d
1/2*K (1) *ul”2 + 1/2*K(2)*u2"2

1/2*%c(1)*(diff(ul,t))"2 +
1/2*c(2)*(diff (u2,t))"2+1/2*v(1)*(Aiff(ul,t)) 2*abs(diff (ul

CE)Y+1/2%v (2) * (Aiff (u2,t) ) *2*abs (diff(u2,t));

[ul u2 u3 ud ub ub u7]

ut (1

% Generalized forces on generalized displacements

syms Fl1 F2 F3 F4 F5 u3

TF
UF
DF
ut

= u3; F6 = ud; F7

F5

u2;

F4

= ul;

F3
FO = u7;

[XN

[XS

Il

Fl

OTION USING LAGRANGE’S

M
70

FAdy

—
=
Py

and zet (2)

.
14

-
t4
.

or zet (1)
DOFB]

%

ze (DOF)

Sl

ub;
diff (dDOF, t)

F8
[F1 F2 ul;
= [ul,u2]
= [DOFF,
diff (DOF, t)
DERIVATION OF EQUATIONS O

ubs;

DOFF

dDOF =

ddDOF =

[1,n]

EQUATION

syms gl g2 g3 g4 g5 g6 g7 g8 g9

F
DOF



(o))
g
T
[eo)
o
T
=~
o}
T
O
o'
T
Ty
o
T
<
o
T
™
o
T
N
o}
T
L)
g
T
:
0}

syms ddgl ddg2 ddg3 ddg4 ddgbs ddg6 ddg7 ddg8 ddg9

[ g1l g2 g3 g4 g5 g6 g7 g8 q9];

DOFg = DOFgt (1

DOFgt =

4

n)

[ dgl dg2 dg3 dgé4 dg5 dgb6 dg7 dg8 dg9];

dDOFg = dDOFgt (1

dDOFgt =

n);

[ ddgl ddg2 ddg3 ddg4 ddgb ddgé ddg7 ddg8 ddg9];

ddDOFg = ddDOFgt (1

ddDOFqgt

n)

Substution set construction

%

.
s

[]

setl
set2
for i

(1;

size of DOFg vector
[setl maple(’*="',DOF(i),DOFg(i))

[setl maple(’'="’,dDOF(i),dDOFg(i))
[setl maple(’'="',ddDOF (i) ,ddDOFg(i))

)
°

n

=1

1;

setl
setl
setl
set2
set2
set?2

.
14

]

3
I

]

‘7 ,DOFq (i) ,DOF (1))

[set2 maple(’'="'",dDOFg(i),dDOF(1i))
[set2 maple(’'*="',ddDOFg(i),ddDOF (i))

7

]

[set2 maple(’'=

.
7

]

7

]

end

’

maple(’'convert’, setl, 'set’)

setl
set?2

-
z?

maple(’convert’,set2, 'set’)

TF;

UF
= DF;

o
B D

Dl

1

for 1

,i.1);

U = U+UBk(1);

..

T = T+TBk (

D1+DBk (1) ;

D1

end

Switch of time dependent terms

o
i

.
I

Temp = maple(’'subs’,setl,T)

Complete EOM

)
°

size (DOF) ;

(1,n)
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1;

1

check dimension
signuml (1,g5-

o
(]

signuml (1, g8-z)
tempSabs(1:n)

1;

% check dimension of DOFg

simplify (L1-L2+L3+L4-F(1i));
signuml (1, g7+2z)

signuml (1,g4-2z)
signuml (1l,g4+z)

signuml (1,qg7-2z)
‘o, tempS (1), tempO (1))

signuml (1,g9+z)

1;:

[ maple(’abs’,1,dql) maple(’abs’,1,dq2)

maple(’'subs’,setl,Dl);

diff (tempL4,dDOFqg(i));

EOM (1)
of EOM and F

end

maple(’subs’, set2, templ) ;
maple (’'subs’,setl,U);
[ signuml (1l,qg3+z)

signuml(1l,qg5+2z) signuml(1l,gé+z)

signuml (1, g8+z)

tempSabs

[ signuml (1,qg3-2)
[setS maple(‘®

[tempSmin(l:n) tempSpls(l:n)

= size(tempS) ;

n

diff (tempL3,DOFqg(i)); % check dimensions of DOFqg

maple(’subs’, setl, temp3) ;

L2 = diff (Temp,DOFqg(i));

tempL3
zeros (1l,p);

1
[1;

p
maple(’convert’, setS, 'set’);

i=1

templ = diff (Temp,dDOFg(i));
setS

temp?2
Elimination of excess bagga

temp3 = diff(temp2,t);

signuml (1,g6-z)

tempL4
signuml (1,g9-z)

L3
L4

Ll
maple(’abs’,1,dgé) maple(’abs’,1,dq7) maple(’abs’,1,dqg8)

maple(’abs’,1,dqg3) maple(’abs’,1,dq4) maple(’abs’,1,dqg5)
maple(‘abs’,1,dqg9)];

for i

%
tempSmin
z)
tempSpls
tempS
[g.p]
tempO
setS

for

end

setS

oo (=4

oP oe
coP oe
coP (e
o° (oY
ol oe
o o
o° oe
oo oP
oo o
AV/O Au/o
oo =
oo oo
oe oe

oo [
oe
oe
oo
oe
o
oe
oe
oe
oe
oe
o0

%%
GENERATE Al AND f1 FROM EOM

¢° oe
oe oe
3 o°

oo
o oe
oe o0
o0 oe
oe oo
ol oe
o0 oP
oP oe
oo oe
o° o°
o o
o oe
o° o
oe oe
o oe
o oe
oo oo
co o0
oP o0
o0 o0
oo [
oo o°
oo o
oo oe
o° oe
o0 o0
oe oe
(o o0
o° oe

o° o° oe

= maple(‘coeff’,EOM(i),ddDOFqg(3));
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= 1:n
A(i,3j)

Determine second derivative terms
for j

Q
°



= maple(’subs’,setS,A(i,J));

A(i,3J)

end

end

= ddDOFg*A;

Ax2dot

Eliminate second derivative terms . from EOM

[

1:n

i
£(1)

for

.
7

(EOM (i) ~Ax2dot (1))

))

maple(’subs’,setsS, £(i

£(1)

1ify(£(i)));

imp

_(S

-

end

Generate state vector

o)
)

oo

syms x1 x2 x3 x4 x5 x6 X7 x8 x9 x10 x11 x12 %13 x14

.
7

[x1 x2 x3 x4 %x5]

Xldot

[x6 x7 x8 x9 x10];
[X1temp Xldot]

Xltemp =

X1

-
7

.
’

[DOFg dDOFq]

DOFqtemp

Convert terms to state vector form

o)
°

[1;

setX
for

1:2*%n

i
setX

.
14

]

[setX maple(’'='’,DOFgtemp (i), X1 (1))

end

maple(‘convert’,setX, ‘'set’);

setX

maple(’subs’,setX,A);

Al

maple(’subs’, setX, f);

f1

input ‘u’

from i

Eliminate variable ‘'t~

)
°

syms ul u2 u3

’

[ul u2 u3lj
Al = subs(Al,u,ut)

f1 = subs(f1,u,ut)

ut =

2

b
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APPENDIX E. MATLAB® WORKSHEET FOR COMPLEX (STRAUB) MODEL
WITH VARIABLE NUMBER OF ROTOR BLADES

function [Al, £f1] = compmod/()

clear
clc

k = 3; % number of blades, up to 7 ‘
syms Phil Phi2 Phi3 Phi4 Phi5 Phié Phi7 Omega t alpha

tempPhi = [Phil Phi2 Phi3 Phi4 Phi5 Phié Phi7];
Phi = tempPhi (1l:k);
psi = Omega*t + Phi;

rl = sym(’‘rl(t)’); r2 = sym('r2(t)");

r = [rl xr2];

Tlr = [1 0 0; O cos(rl) sin(rl); 0 -sin(rl) cos(rl)]l:
T2r = [cos(r2) 0O sin(x2); 0 1 0; -sin(r2) 0 cos(r2)]l;

ml = (T1lr*T2r) .’

for i = 1:k

m2(:,:,1) = [cos(psi(i)) sin(psi(i)) 0; -sin(psi(i))
cos(psi(i)) 0; 0 0 171;
end
zetl = sym(‘zetl(t) ); zet2 = sym(‘zet2(t)’); zet3 =
sym(‘zet3(t)’); zetd = sym(’zetd(t)’);
zetb = sym(’zet6(t)’); zetb6 = sym(’zet6(t)’); zet7 =

sym(’zet7(t)’);
tempzet = [ zetl zet2 zet3 zetd zet5 zet6 zet7 ];
zet = tempzet (1l:k);

betl = sym('betl(t)’); bet2 = sym(‘bet2(t)’); bet3 =
sym(‘bet3(t)’); betd = sym(‘betd(t)’);
bet5 = sym(’'bet6(t)’); bet6 = sym(’'betb6(t)’); bet7 =

sym(’bet7(t) ") ;
tempbet = [ betl bet2 bet3 bet4 bet5 bet6 bet7 1:;
bet = tempbet(l:k);

for 1i 1:k
T3z(:,:,1) = [cos(zet(i)) sin(zet(i)) 0; -sin(zet(i))

( )
cos(zet(i)) 0; 0 0 11;

75



T2b(:,:,1) = [cos(bet(i)) O sin(bet(i)); 0 1 0; -
sin(bet(i)) 0 cos(bet(i))];

T3p(:,:,1) = [cos(psi(i)) sin(psi(i)) 0; -sin(psi(i))
cos(psi(i)) 0; 0 0 131;
end

for i = 1:k
m3(:,:,1) = (T3z(:,:,1)*T2b(:,:,1)).";
mad(:,:,1) =
(T3z(:,:,i)*T2b(:,:,1)*T3p(:,:,1)*T1lr*T2r).’;
end

syms h el R mbl mb2 mb3 mb4 mb5 mb6 mb7

tempmb = [mbl mb2 mb3 mb4 mb5 mbé6 mb7];
mb tempmb(1l:k);

ul sym{(’ ul(t) )

u2 sym(‘u2(t)’);

rhoFI_TI = [ul u2 0};

rhoHF = [0 O h];

rhoBuH = [el 0 0]; % changed from vector form
rhoPBd = [R 0 0];

rhoHF_I = (ml*rhoHF.’).’;

for i = 1:k
rhoBuH_I(:,:,1)
rhoPBd_TI(:,:,1i)
rho(:,:,1) =

(rhoFI_I+rhoHF_I+rhoBuH_I(:,:,i)+rhoPBd I(:,:,1i)).";
V(:,:,1) = diff(rho(:,:,1),t);

Vsgr(:,:,1) = V(1,:,i)"2 + V(2,:,i)"2 + V(3,:,1)"3;
TBk(:,:,1) = 1/2*mb(i)*Vsqr(:,:,1);

ml*m2(:,:,i)*rhoBuH.’;
ml*m2(:,:,1i)*m3(:,:,1i)*rhoPBd.’;

end

B 5555555555555 555%5% 0555555555555 5535%5%%%%%
5%%%%%%3%%%5%%%%%%%%

% Potential Energy of kth blade (UBk)

R R A R R R R R R R R R R R L R RN SR T
5L 25%555%%%%%

syms Kel Ke2 Ke3d Kdl Kd2 Kd3 Ksl Ks2 Ks3 z
syms kfll kfl1l2 k£f13 kfld kfl5 kflé6 kfl7 kf31 kf32 kf33 kf34
kf35 kf36 k£f37
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syms k111 k112 k113 k114 k115 k116 k117 k131 k132 k133 k134
k135 k136 k137

syms Ked Ke5 Ke6 Ke7 Kd4 Kd5 Kdé6 KA7 Ks4d Ks5 Ks6 Ks7
Ket = [Rel Ke2 Ke3 Ked Keb Keb6 Ke7];

Ke = Ket(l:k);

Kdt = [Kdl Kd2 Kd3 Kd4 Kd5 Kdé6 KdA7];

Kd = Kdt(1l:k);

Kst = [Ksl Ks2 Ks3 Ks4 Ks5 Ks6 Ks7];

Ks = Kst(l:k);

kflt = [kfll kfl12 k£f13 kfl4 kf1l5 kfle kfl7];

kfl = kfit(l:k);

kf3t = [kf31 kf32 k£33 kf34 kf35 kf36 kf37];

kf3 = kf3t(1l:k);

k11t = [k111 k112 k113 k114 k115 k116 k1l17];

kll = k11t (1:3);

k13t = [k131 k132 k133 k134 k135 k136 k1371;

k13 = k13t(1:3);

for i = 1:3

UBkl = 1/2% (bet(i)*2*kfl(i)+zet(i)"2*kl1(1i));

UBKk3 1/4% (bet (i) "4*kf3 (1) +zet (1) ~4*kl13(1));
UBk(i) = UBkl + UBk3; % + UBk3; not required for simple
model ‘

end

R R R R R R R R R R R E R R R R R LR LR R R R R LR R RS PR R R R R R S T T T
555555 5%5%%%%5%%%%%

% Dissapative Energy

B B85 %5555 55555555 %5%5%5%5%5%%%35555%555555555553%3%%%
5%%%%%%%%%%%%%%%%%

syms DBl DB2 DB3 Czetal Czeta2 Czetal Vzetal Vzeta2 Vzetal
syms cfl cf2 cf3 cf4d cf5 cf6 cf7

syms cll c¢l2 cl3 cl4 cl5 ¢l6 cl7

cft = [cfl cf2 cf3 cfd cf5 cf6 cf7];

ct = cft(l:k);

clt = [cll cl2 cl3 cl4d cl15 ¢cl16 cl7];

cl = clt(1:3);

Czeta = [Czetal Czeta2 Czeta3l; % convert to 7 blades
matrix

Vzeta = [Vzetal Vzetal2 Vzeta3];

for i 1
DBk (1) 1/2*diff (bet (i), t)2*cf (i) +
(

= 1:3
( =
1/2*diff (zet(i),t)"2*%cl (i) ;
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end

oo
o
o
oo
oo
oo
oe
oo
e
oe
oe
o
o0
o°
o
oe
e
o°
o

for Fuselage

S

-

Energy Expressio

o
oL
e
oe
o°
oe
e
oo
oo
o
oe
e
a0
oo
a0
o0
oo
ov
e

(TF)

.
7

r
-
’
4
’

1/2*(diff(ul,t)"2*M(1)+diff(u2,t)"2*M(2));

TFr = 1/2*(diff(xrl,t)"2*I11 + diff(r2,t)" 2*I22-

2*diff(rl,t) *diff(r2,t)*112);

TF

[cl c2]
[vl v2]
[M1 M2]
[K1 K2]
= TFt + TFr
Potential Energy of Fuselage

syms K1 K2 cl c2 vl v2 M1 M2 Ill I22 I12

% Kinetic Energy of Fuselage
TFt

c
v
M
K

)
o

oe
oe
oo
oe
oe
oe
oe

o°
oe
o®
e
a0
oe
o°
o
oe
o°
ao
oo

r
.
7

14

1/2*ul”2*KT1 + 1/2*u2”2*KT2
1/2*r1”2*KR1 + 1/2*r272*KR2

UFt + UFr

syms KTl KT2 KR1 KR2
UFt
UFr
UF =

o°
o©
oo
oo
o0
o°
oe
oo
o0
o0
oQ
oe
oo
oo
oo
oo
o
oe
ae
o°

(DF)

tion Energy of Fuselage

Dissapa

o
(e}

oe

oo
oe
oe
e %
o)

oe
oe

o0
oe
oe
oe
o°
oe
[y
oe
oe
oe
o°
oe
oe
oo
oo
oe
oe
oe
oe
oo
oe
o°
oe

oo
oe
oe
oe
oe
o0

oe
oe
oe
oe
[y
oe
oe
oe
o°
oe
oe
oe
oe
oe
oe
oe
oe

oe
o0
o0
oe

oe
oQ
oo
[

0/0

o
(e
oe
(=
o0
o
o
[
oe

!
.
I

ff(r2,t)"2*CR2

i
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1/2*diff(ul,t)"2*CT1 + 1/2*diff (u2,t)” 2*CT2

1/2*diff(rl,t)"2*CR1 + 1/2*d

syms CT1 CT2 CR1 CR2 VTl VT2 VR1 VR2

DFtv
DFrv



1/2*diff(ul,t)”2*abs(diff(ul,t))*VT1+1/2*diff (u2,t)~2*abs(d

iff(u2,t))*vT2;

DFrh
1/2*diff(rl,t)"2*abs(diff(rl, t))*VR1+1/2*diff(xr2,t) "2*abs (4

iff(r2,t))*VR2;
DF = DFtv + DFrv + DFth + DFrh;

DFth =

ae
ae
oe
oe
oo
o
e
o
a0
oe
oo
o0
o°
oe
oe
e

o e

e
[
oo
oe

4

t,:,1)) 00
:,1));

(.
:,1)-

,1)*cos(zet (1)) ;

,1)72);

*V_I_t

:,1)+cd0/a*uu(:, :,1i)*UT

7).
:,1)
2, 1) /UT(

.7

, 1, 1) *UT(:

-
4

:,1);

:,1)72+U0T(:,
:,1) *UP(

:,1)+Vair.

simplify(m4(:

’

I

do for 7 blades
Omega*lambda*R];

14

(2,:,1)

(3,
= sqgrt (UP(:
:,1));

(L,:,1);

:,1)*UU(:

0,

(-V{
= 0.7*R"2*dFbeta(:

7

_V_Bd_t
= 0.7*R*"2*dFzeta(:,:,1);

(Generalized Aerodynamic Forces)
-V_Bd_t

V_Bd t
= thet(i)-atan(UP(:,

;1)

1/2*rhol*a*c* (aoa(:
s, 1)

i)
(:,:,1)

.
.
’

:,1)*UP(:

:,1)

(:

[thetl thet2 thet3 thet4 thet5 thet6 thet7]

:,1)
i, 1)
:, 1)
:,1)
:,1)
dfFbeta(:

(

[mu*Omega*R,
V_Bd_t

1:k
1:k
1:k

Mzeta(:

end

7
14
.
.7

~ 7

UT(:

UP(:

:,1))
Mbeta_k

dFzeta(:,:,1)
1/2*rhol*a*c* (aca (i) *UU (:

V_I_t
UR (:
Uu(:
aoa (

7

syms thetl thet2 thet3 thet4 thet5 thet6 thet7 cd0 mu

lambda rhol a ¢

thett
thet = thett(l:k);

% Aerodynamic
cd0/a*uu(

Vair
for i
end
for 1
end
for i

(:

oe
o
oe
oe
ey
a0

0P
oe
oe
[
oe
oe
oe
[
o0
oo
oe
o0
oe
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% Derivation of Equations of Motion by Lagrangian Method
R R P PR E R R LR PR PR R R TR TS S S T 1)
Tt 2%%3%%%

syms

DOFF = [ul, u2, rl, r2}1;

DOFB = [];

DOFB = [bet, zet];

DOF = [DOFF, DOFB];

dDOF = diff (DOF,t);

ddDOF = diff (dDOF,t);

[1,n] = size(DOF);

AR R R R LR PR ERE PR PR PR P RS EESEPRRPRPP
555555229 %%%%%%%%3%

% Transformation between time dependent and independent
notation by substituting sets

ER R R R R R R R R R R R R R R T T
BE55%55%5%%%%%%%%%3%%%

syms gl g2 g3 g4 g5 g6 g7 g8 g9 gl0 dgl dg2 dg3 dgé4 dg5 dg6é

dg7 dg8 dg9 dglo

syms ddgl ddg2 ddg3 ddg4 ddg5 ddg6 ddg7 ddg8 ddg9 ddglo
syms qll gl2 gl3 gl4 gl5 gl6 gl7 gl8 dgll dql2 dqgl3 dgl4
dgl5 dglé dgl7 dgls

syms ddgll ddgl2 ddgl3 ddgl4 ddgl5 ddglé ddgl7 ddgls

DOFat = [l g2 g3 g4 g5 g6 g7 g8 Q9 gl0 gll gl2 gl3 gl4 gls
glé gl7 gl8l;

DOFg = DOFgt(l:n);

dDOFgt = [dgl dg2 dg3 dg4 dg5 dg6 dg7 dg8 dg9 dgl0 dgll
dgl2 dgl3 dgl4 dql5 dglé dgl7 dgl8];

dDOFg = dDOFgt (1:n);

ddDOFgt = [ddgl ddg2 ddqg3 ddg4 ddg5 ddgé ddg7 ddg8 ddqg9
ddqlO ddgll ddgl2 ddgl3 ddgl4 ddgl5 ddqlé ddgl7 ddgls8];
ddDOFg = ddDOFgt(1l:n);

setl = [];
set2 = [];
for i=1:n % size of DOF vector
setl = [setl maple(’‘'=‘’,DOF(i),DOFg(i)) ]
setl = [setl maple(’‘'='’,dDOF(i),dDOFqg(i))
[setl maple(’'="’,ddDOF (i), ddDOFqg (i)
]
)

’

1;
)

setl = 1;
set2 = [set2 maple(’‘'=‘'’,DOFqg(i),DOF (1)) 1];
set2 = [set2 maple(’'‘='‘,dDOFg(i),dDOF(i)) ];
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set2 = [set2 maple(’‘='’,ddDOFqg(i),ddDOF(i)) 1;
end

setl = maple(’'convert’,setl, ‘'set’);
set2 = maple(’'convert’,set2, ‘set’);
T = TF;
U = UF;
D1 = DF;

GF = [0,0,0,0];

[1,n] = size(DOFB) ;
for 1 = 1:k

T = T+TBk(:,:,1);

U = U+UBk (i) ;

D1 = D1+DBk (i) ;

GF = [GF Mbeta_k(:,:,1i) Mzeta(:,:,1i)];
end

Temp = maple(’'subs’,setl,T); %Temp = subs(T,dDOF,dDOFq) ;
save for time comparison '

GFg = maple(’subs’,setl,GF); %GFqg = subs (GF,dDOF,dDOFq) ;
save for time comparison :

[1,n] = size(DOF);

for 1 = 1:n
templ diff (Temp, dDOFg(i)) ;
temp2 maple(’'subs’, set2, templ) ;
temp3 = diff(temp2,t);
Ll = maple(’'subs’,setl, temp3);
L2 = diff (Temp,DOFqg(i));
templL3 = maple(’subs’,setl,U);

L3 = diff(tempL3,DOFqg(i)); % check dimensions of DOFg
templ4 = maple(’subs’,setl,Dl);
L4 = diff(tempL4,dDOFg(i)); % check dimension of DOFg
% EOM(i) = simplify(L1-L2+L3+L4-GFg(i));
EOM(i) = (L1-L2+L3+L4-GFg(i)); % input to allow
computation, gags on simplify (EOM)
end

% code will generate EOM, will not perform operations on
EOM, ile. simplify, eval, etc.
% remainder of code should be correct, could not evaluate
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o

Format equations of motion into form A d2x/dt2 = f

i~

7

maple(’'coeff’,EOM(i),ddDOFqg(]j))

A(i,3])

end

end

-
’

= size (ddDOFq)
zeros(1l,qg)

[7,9]
setZz

’

.
7

g),setZ, ddDOFqg) )

-eval (subs (EOM (1

£f(l:9)

Ax2dot = ddDOFQ*A;

n

i=1
£(i) =

for

-
I

(EOM (i) -Ax2dot (1))

))

i

maple(‘subs’, setS, £ (
-(simplify (£(i)));

)

i

oo
oo
oo
o0
oP
oo
o°

o°

o°

% Change notation for input into S-function

oo
[
oo
oo

oo
oe
[
oo
oe

syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

x17 x18

[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

x15 x16 x17 x18]

X1ldot

Xltemp =
X1

.
?

Xltemp(l:n);

!

2*n)
[X1temp Xldot]

DOFgtemp

Xltemp (n+1:

14

-
7

= [DOFg dDOFq]

X1

[]

setX
for i

:2*n

=1

7

]

[setX maple(’'='',DOFgtemp (i) ,X1 (1))

setX

end

!

maple(’convert’,setX, 'set’)

setX

’

abs(1,x4)]

abs (1,x3)

abs(1,x2)

[abs (1,x1)

tempsetX]l =
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tempzeros = zeros(size(tempsetXl));

Al = maple(’'subs’,setX,A);
fl = maple(’'subs’,setX, f);
f2 = subs(fl, tempsetXl, tempzeros) ;

syms ul u2 u3

ut = [ul u2 u3l]l;

Al = subs(Al,u,ut);
£2 = subs(f2,u,ut);
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"APPENDIX F. MATLAB® FUNCTION TO ACCESS THE MAPLE FUNCTION

‘ABS’ TO CALCULATE THE ABSOLUTE VALUE

o
©
abs.m

oP de

This function is designed to call the Maple function

oe

b and ¢ and return the result

‘abs’ with two inpust,

%

abs (b, c)

function a

maple('abs’,b,c)

a
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‘SIGNUM’

APPENDIX G. MATLAB® FUNCTION TO ACCESS THE MAPLE FUNCTION

This function is designed to call the Maple function

signum.m

%

a

evaluating one expression,

oo

’signum’

signum(a)

function s

maple(’'signum’,a);

S =
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APPENDIX H. MATLAB® FUNCTION TO ACCESS THE MAPLE FUNCTION
‘SIGNUM’, TAKING THE DERIVATIVE

oe

[

ction

using a variation of the function with

0

This function is design to call the Maple fu

' signum’

foixd

<)
°

signum(a,b)

function s

maple(’signum’,a,b);

s =
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APPENDIX I. MATLAB® FUNCTION MUNION, TAKING THE UNION OF
TWO SETS USING THE MAPLE FUNCTION

function sym_union = munion(argl,arg2)

stringa = char(argl); %get rid of extra char’s
stringa = stringa(8:end-2);
if length(stringa) == 0
stringa = "{}';
end

stringb = char(arg2?);

stringb = stringb(8:end-2);
if length(stringb) == 0

stringb = ‘{}’;
end
union_string = [stringa,’ union ’,stringbl;
union_string(union_string == ‘]’) = '}';
union_string(union_string == ‘[{’) = '{’;
union_string = [‘maple(’’ *, unioh_string, A I B
templ = sym(eval(union_string));
temp2 = char(templ); %[templ(templ == "{’') = ' [’]

i4

temp2 (temp2 == "{’) = "[’;
temp2 (temp2 == "}’) = ']1°;

sym_union = sym(temp2);

91



THIS PAGE INTENTIONALLY LEFT BLANK

92



INITIAL DISTRIBUTION LIST

Defense Technical INfOrmation CENEET ... ..ueieeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeees e
8725 John J. Kingman Rd., Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley KnoX LIDIATY .....ccccooiriiieireecieeieeeeeeeee et s ne s ee s e
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

Chairman, CoAE AATCO ...t eeee e ee e eeeereseeeseseesssessessssssssseseesasssees
Department of Aeronautics and Astronautics

411 Dyer Rd.

Monterey, CA 93943-5101

Dr. E. RODEIS WOOQ.......ciriiuiiieeieeeieeeeeite et ee e eeeees s eeas
Naval Postgraduate School

Code AA/WD

699 Dyer Road

Monterey, CA 93943-5106

Dr. Robert L. KING ..coueiiiieieertentetese et en e e
Department of Aerospace Engineering

Mississippi State University

P.O.Box A

Mississippi State, MS 39762-5501

Dr. Gary ANEISON .......cccouiriiiieirieeeete ettt steete ettt eee e sasessene s s enns
U. S. Army Research Office

P.O. Box 1211

Research Triangle Park, NC 27709

RODEIT D, WEISSEIICLIS ..eeeeeeiiieeeeeeeeeeee et ettt eeeeaesresesssaeseeee e mm s
1943 Harris St.
Richland, WA 99352

Dr. RODETt OITISTOMN. ...ceouieeiieeeeeeetieeeeeeeceeecee e et et eeeneeeeeeeeeeeeeeesseesesssnessennneens
Building: 215, Room: 201C

NASA Ames Research Center

MS 215-1

Moffet Field, CA 94035-1000

93



Dr. Jeffrey D. SINGIEtOn ...ccceeiiiiiiiicieceeeeeerec ettt e
Vehicle Structure Directorate

U.S. Army Research Laboratory

Mail Stop 340

NASA Langley Research Center

Hampton, VA 23681-0001

M. RODEIt BIACKWELL ... oot eeeeeeeeeeesesseessansa e enaneeeeseesssssesnesnes
103 Old Zoar Rd
Monroe, CT 06468

D1, FLEArICh SErAUD...ceeeeeeeeeeeeeieeeeeeeee et eeveeeeeeesetstesestasennteeasasasasasassenaes
1760 E. Halifax St
Mesa, AZ 85203

94



